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We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equa-
tion models from observed time series. This hybrid approach combines a genetic algorithm to search the space
of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is
used in a context-free grammar to restrict the search space for the functional form of the target model. We find
that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the
evolution of the dynamical models that correspond with the emergence of favorable model components. We
apply the hybrid method to both artificially generated time series and experimentally observed protein levels
from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein inter-
action network for an individual’s response to the smallpox vaccine.
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I. INTRODUCTION

One of the most important goals of biology is to link
genes and their products �mRNA, proteins, and metabolites�
into functional pathways and dynamic networks that control
intracellular and intercellular processes. Significant progress
has been made in achieving this goal through the develop-
ment of high-throughput technologies in molecular and cel-
lular biology, which have made it possible to measure the
gene expression �mRNA level� response to particular stimuli
for a large portion of an organism’s genome �1,2�. Moreover,
it is possible to measure other components of these path-
ways, such as the level of proteins expressed by a cell or
tissue �3� and the concentrations of enzymes, metabolites,
and other cell-interaction mediators �4�. Most of this biologi-
cal data are snapshots of the time-varying biological system.
Hence, much of the effort in data analysis has involved the
application of statistical and machine learning methods to
find genes that discriminate between phenotypes, ignoring
the dynamical nature of the biological system. Increasingly,
however, experiments are being conducted that sample these
systems as a function of time �5–7�.

Given the observed time-course data, our goal is to infer a
dynamical model of general form

ẏ�t� = f„y�t�,�,��t�… , �1�

where the dimension of the parameter vector � is D�, and the
length Dy of y corresponds to the number of different mo-
lecular species sampled from the biological system. More
explicitly, we are trying to infer a coupled system of Dy
first-order nonlinear ordinary differential equations �ODEs�
of arbitrary form

ẏ1�t� = f1„y1�t�,y2�t�, . . . ,yDy
�t�;�1, . . . ,�D�

;�1�t�…

ẏ2�t� = f2„y1�t�,y2�t�, . . . ,yDy
�t�;�1, . . . ,�D�

;�2�t�…

]

ẏDy
�t� = fDy

„y1�t�,y2�t�, . . . ,yDy
�t�;�1, . . . ,�D�

;�Dy
�t�… .

�2�

The process noise � is assumed to be white and normally
distributed with covariance matrix Q. We assume that the
data vector z�t� can be written as a deterministic measure-
ment function of the state vector y plus a Gaussian white-
noise term � with covariance matrix R

z�t� = G„y�t�… + ��t� . �3�

We introduce two grammar-based methods for inferring
the parameters � and functional form f of a nonlinear dy-
namical model that predicts the behavior of a noisy time
series of interacting biomolecules. Grammars allow one to
introduce language bias �i.e., a restriction of the search space
based on knowledge about the underlying system� by con-
straining the form of the inferred models. It has been shown
that stronger language bias leads to better generalization of
learned models �8,9�. Our grammatical method allows one to
specify any type of kinetics for the model architecture
search: from Michaelis-Menten enzyme kinetics and the
S-system approximation down to simple linear approxima-
tions. Often one has some intuition into the appropriate
model kinetics based on the underlying biochemistry, but if
such knowledge is not available, one can simply apply syn-
tactic constraints on the grammar.
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Using a genetic algorithm �GA�, we test a grammatical
evolution approach for nonlinear system identification on a
simulated time series. We find that parameter estimation in
the nonhybrid approach exhibits slow convergence, hence,
we introduce a hybrid �or, more specifically, memetic� ap-
proach that combines the model search space capabilities of
GAs with an optimal parameter estimation method. A
memetic algorithm is an evolutionary algorithm that includes
a nongenetic local search or refinement to improve geno-
types �10�. The etymologic origin of memetic is the root
word “meme,” a unit of cultural evolution analogous to a
gene from the popular book by Dawkins �11�. The main dis-
tinguishing feature of memes is that they are processed and
possibly improved by the individual. This approach, how-
ever, is still Darwinian because, unlike Lamarckian evolu-
tion, the acquired trait is not directly inherited. Rather, what
is inherited in our case are model architectures with the abil-
ity to improve over the lifetime of the model. In our memetic
algorithm, we implement the unscented Kalman filter �UKF�
�12�, which has been demonstrated to be an accurate and
computationally efficient method for parameter estimation of
nonlinear models from noisy time series �13�. However, the
UKF signal analysis method does not estimate the functional
form of the model. Thus, the grammatical memetic evolution
approach introduced in this paper is an ideal hybridization of
methods for noisy nonlinear system identification.

We apply the hybrid technique to infer a phenomenologi-
cal dynamic model from a sparse time series of protein ex-
pression from the directed analysis of cytokines measured
from the serum of subjects who received the smallpox vac-
cine. Cytokines are small protein molecules that are central
to communication among immune system cells and between
immune cells and other tissue cell types. Cytokines act by
binding to their cell-specific receptor. These receptors are
located in the cell membrane and initiate a signal cascade
that eventually leads to biochemical and phenotypic changes
in the target cell. Before an immune cell can kill a foreign
antigen, such as a virus, bacterium, pollen, or tumor, the cell
must first be recruited and activated. Recruitment is fre-
quently mediated by chemotactic cytokines �i.e., chemok-
ines�, while activation is often induced by cytokines such as
interferon �IFN�, tumor necrosis factor �TNF�, and interleu-
kins �ILs�, which are produced by a variety of cell types
including natural killer �NK� cells and T lymphocytes. In
response to virus infection, cytokines may induce cell divi-
sion, differentiation, programmed cell death �apoptosis�, ac-
tivation, or movement, and can even upregulate other cytok-
ines, thus, constituting a network of interacting cytokine
proteins.

The outline of this paper is as follows. We begin by in-
troducing grammatical evolution for nonlinear dynamic sys-
tem identification. Then we review the unscented Kalman
filter and combine it with grammatical evolution to create a
grammar-based memetic algorithm. We compare these two
methods by using each to identify the model architecture and
parameters for a simulated time series involving a nonlinear
feedback loop, and we find the memetic approach outper-
forms the nonhybrid approach. Finally, we apply the gram-
matical memetic evolution method to observed time-series
cytokine protein levels from subjects who received the Aven-
tis Pasteur smallpox vaccine.

II. GRAMMATICAL EVOLUTION

Grammatical evolution �GE� is an evolutionary algorithm
�EA� in which a Backus-Naur form �BNF� grammar is speci-
fied that allows a program or model to be constructed from a
genetic algorithm �GA� bit string �14�. GAs are a robust set
of search techniques that perform well on a wide class of
problems. Specifically, GAs have been shown to be a robust
approach to generating network structures and models
�15,16�. A grammar is a set of production rules that can be
chosen from the GA bit string to produce sentences in any
language. Sentences created by our grammar are systems of
coupled nonlinear differential equations. BNF is a formal
notation for describing the syntax of a context-free grammar
as a set of production rules, consisting of terminals �model
elements� and nonterminals �the production rules them-
selves� �17�. We now discuss the mapping from GA bit
strings to GE nonlinear models. For a more detailed intro-
duction to grammars in the context of genetic algorithms, we
refer the reader to Ref. �14�.

In our discussion of grammars, we use the convention in
which nonterminals are enclosed in angle brackets �e.g.,
�nonterminal��. Equation �4� illustrates the type of grammar
production rules we will use to infer a nonlinear protein in-
teraction model from immunologic time-series data

�model-expr� � = �param��var� + �param��var� �0�

� �param��reg-fn� + �param��var� �1� .

�4�

When there is more than one choice for a rule, the choices
are delimited by a vertical bar with the number of the choice
given in parentheses to the right. For each dependent vari-
able yi �denoted generically by �var��, a nonlinear differential
equation expression �i.e., f in Eq. �1�� is constructed from
�model-expr� using the GA bit string. This is done by break-
ing up the GA bit string into 16-bit segments and converting
the bit string into a sequence of 16-bit integers, referred to
now as “codons,” while the wrapping property of modular
arithmetic is used to decode each nonterminal from the GA
codon. The choice of rule used for each nonterminal is given
by rule= �codon mod M�, where M is the number of possible
rules for the nonterminal being considered. After one of the
two rules for �model-expr� is chosen, its nonterminals are
recursively replaced with the corresponding rules, based on
the remaining GA codons, until �model-expr� is given only in
terms of terminals. The final GE individual is a system of
coupled nonlinear differential equations, whose fitness is de-
termined by measuring the nearness in a least-squares sense
of the numerical prediction and the observed expression lev-
els at the available time points. One can allow each node in
the system to have a different number of connections by
including recursive elements in the grammar.

The connectivity of the model is determined by the �var�
nonterminals. Whenever �var� is encountered in the gram-
mar, its value is given by the terminal yi, where i
= �codon mod N�, N being the number of observed biomol-
ecules in the data set. In Eq. �4�, the GA is given two choices
for �model-expr�: a purely linear equation �0� or an equation
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containing a nonlinear regulatory term �1�. The presence of
�var� in �reg-fn� of Eq. �5� allows the GA codons to deter-
mine the influence of a protein �e.g., as a lymphocyte inhibi-
tor in a cytokine network or a transcription factor in a gene
regulatory network� on other elements of the network. Bio-
molecule yi, an instantiation of �var�, can activate or inhibit
the target biomolecule, depending on whether the GA codon
yields rule �0� or �1� for the regulation function �reg-fn� in
Eq. �5�

�reg-fn� � = h+��var�,�param�� �0�

� h−��var�,�param�� �1� . �5�

The Hill functions h+�y ,��=y / �y+�� and h−�y ,��=1
−h+�y ,�� model the effect of biomolecule y activating or
inhibiting, respectively, the target biomolecule.

In the GE �nonhybrid� method, whenever a �param� non-
terminal is encountered, its value in the interval �Rmin,Rmax�
is given by �Rmax−Rmin� / codon+Rmin. To our knowledge,
this mapping from codons into an interval is a new approach
in grammatical evolution constant creation. Other constant
creation grammars, such as digit concatenation �18�, have
been introduced, but we use a direct codon mapping method
because it evolves constants directly from a single codon.
One drawback of specifying an interval is that one may not a
priori know its range; however, this limitation can be over-
come by including a recursive element in the constant cre-
ation grammar to allow real constants to evolve outside the
original interval. The ability to evolve real constants more
easily is an advantage of GE over genetic programming,
which directly evolves programs but has difficulties with
constant creation �19�.

III. GRAMMATICAL MEMETIC EVOLUTION

With a biologically motivated grammar specified, the GA
is in charge of evolving the model structure and connections.
In the GE approach, evolution provides a balanced search
mechanism for the model architecture and parameter spaces
to arrive at an approximate model. However, as we show in
Sec. IV, this method is slow to converge to the optimal pa-
rameter values with precision. To speed up parameter esti-
mation, we combine the grammar-based GA with the un-
scented Kalman filter �UKF� �12�—an optimal recursive
parameter estimation method—to create a more powerful
method we call grammatical memetic evolution �GME�. One
reason for introducing the nonhybrid approach in the previ-
ous section is for comparison purposes to show that prema-
ture convergence is not an issue for our memetic approach.

For the GME approach, whenever a �param� nonterminal
is encountered, an unknown parameter is inserted into the
model expression and the parameters are later optimized by
the UKF, which is the nongenetic refinement algorithm we
use in our memetic algorithm. The UKF is itself a hybrid
approach that unites the accuracy of Monte Carlo Markov
chain particle filters with the speed of traditional Kalman
filters. This unification is achieved through “deterministic
sampling” �12,13�. Another advantage of the UKF is that

there is no need to calculate derivatives with respect to the
state variables, which would be challenging in this inference
approach wherein the model architecture is not fixed but al-
lowed to evolve. The UKF is robust to measurement noise, a
perennial challenge of biological data, and the UKF can
naturally deal with unobserved variables, a particular chal-
lenge for modeling biological networks, such as gene regu-
latory networks, in which gene and protein expression data
often are not measured in a coordinated fashion.

The following are the key elements of Kalman filtering
for parameter estimation. Because the observed time series is
sampled at discrete time points, we rewrite Eq. �1� as a dis-
crete nonlinear deterministic state space model �20� for the
state at observed time point tk+1 in terms of its predecessor at
time tk

yk+1 = F�yk,�k,�k� , �6�

and

F�yk,�k,�k� = yk + �
tk

tk+1

f„y�T�,�,��T�…dT , �7�

where the states obey the Markov condition that each state
follows uniquely from its predecessor. For parameter estima-
tion, it is convenient to represent the state of the system
augmented by the vector of parameters �k

xk = 	�k

yk

 . �8�

The recursive engine of the Kalman filter �21� involves
correcting the predicted moments with the observed data us-
ing equations

x̂k+1�k+1 = x̃k+1�k + Kk+1�zk − ỹk+1�k� �9�

and

Kk+1 = Px̃ỹPỹỹ
−1. �10�

The a posteriori estimate of the augmented state at time step
k+1, given by Eq. �9�, consists of the a priori prediction
x̃k+1�k at the previous time step and a correction term propor-
tional to the difference between the observed data zk and the
estimate of the unaugmented state ỹk+1�k at the previous step.
The Kalman gain or blend matrix K, updated by Eq. �10�, is
chosen to minimize the trace of the a posteriori error cova-
riance matrix Px̂x̂ because the trace of this covariance matrix
equals the sum of the squared errors of the components of
the posterior estimate of x �i.e., x̂k+1�k+1�. In Eq. �10�, Px̃ỹ is
the covariance matrix for the deviation of the x and y states
from their a priori estimates. Together with the unscented
transformation below, equations �9� and �10� are used recur-
sively to improve the state and parameter estimates by step-
ping through the experimentally observed time points tk until
the final time point is reached. We perform multiple sweeps
through the time-ordered data until the parameter estimates
converge between sweeps to within a specified tolerance.

The unscented transformation retains the exact nonlinear-
ity of the model F but approximates the a posteriori density
of the state xk+1 by a Gaussian. Instead of linearizing using
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Jacobians, the UKF algorithm uses a set of 2Dx+1 �Dx=Dy

+D�� sample points �called � points� to parametrize the
means and covariances, and then one propagates the � points
through the state equations. Consider a normally distributed
random variable r. Such a random variable is completely
described by its mean r̄ and covariance matrix P. This infor-
mation can be stored with some redundancy in 2Dr sigma
point matrices �i whose columns are computed by

�0 = r̄ , �11�

�i = r̄ + ��DrP�i, �i = 1, . . . ,Dr� , �12�

� j = r̄ + ��DrP� j, �j = Dr + 1, . . . ,2Dr� , �13�

where we use the Cholesky decomposition to find the matrix
square root, though any choice is suitable, and ��·�i denotes
the ith row or column of the matrix square root. Theoretical
details and application of the unscented transformation algo-
rithm to Kalman filtering for state space modeling and the
deterministic calculation of the statistics of a random vari-
able undergoing a nonlinear transformation can be found in
Refs. �12,13,22�.

IV. NONLINEAR SYSTEM IDENTIFICATION
FOR A MODEL SYSTEM

As a proof-of-principle test, we use the grammar-based
methods �GE and GME� to evolve a nonlinear model from
data simulated for an N=3 one-gene inhibitory feedback
loop based on the operon model

dy1

dt
= �1,3h−�y3,�1,3� − �1y1,

dy2

dt
= �2,1y1 − �2y2,

dy3

dt
= �3,2y2 − �3y3. �14�

We corrupt the simulated data with external Gaussian obser-
vation noise � with constant covariance R=0.01, but we as-
sume no intrinsic noise in the model, �=0. We simulate six
time points for each quantity, which is a typical sampling
frequency for sparse biological time-series data sets. The
“Target” row of Table I shows the model parameters used to
simulate the data plotted in Fig. 1. First introduced in Ref.
�23� and then extended in Ref. �24�, the operon model con-
tinues to be a useful framework for modeling biological sys-

TABLE I. Inferred model parameters. Target: parameters used in the nonlinear Eq. �14� model to simulate
sparse time-series data. Both grammatical evolution �GE� and grammatical memetic evolution �GME� found
the correct network topology, but GME found the correct topology more efficiently and found the network
parameters more precisely than GE.

�1,3 �2,1 �3,2 �1,3 �1 �2 �3

Target 0.9 1.0 0.6 0.9 1.0 0.6 0.8

GE 0.923 0.984 0.639 0.978 0.927 0.584 0.861

GME 0.904 0.997 0.600 0.907 1.003 0.598 0.800

FIG. 1. Simulated gene product expression
versus time in days for a one-gene feedback loop.
Units vary in experimental expression data, but a
natural unit is mRNA or protein copies per cell.
Symbols indicate time points simulated from Eq.
�14� with target parameters from Table I. Dashed
lines are the numerical solutions of the ODE sys-
tem evolved by grammatical evolution �GE� at
generation 1000 and solid lines by grammatical
memetic evolution �GME� at generation 100.
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tems �25,26�. In Eq. �14�, the structural gene that codes for a
protein or enzyme is linked with an operator gene y1 that
regulates transcription and represents the expression of
mRNA. The constants �i,j are production constants and the
parameters �i are degradation constants for the operator gene
and the other products of the structural gene. The expression
of molecule yi �i�1� increases in proportion to the previous
molecule yi−1 in the loop and decreases in proportion to its
own expression through degradation, diffusion, and growth
dilution. To close the feedback loop, the operator gene y1 is
regulated by the effector molecule yN �N=3� via the inhibi-
tory Hill function h−.

Methods were implemented in C++ using the genetic algo-
rithm library GALIB �27�, which we modified for parallel use
on a LINUX cluster with the message-passing interface �28�.
We use a crossover rate of 0.8 and mutation rate of 0.2.
Because there are many systems that are not well behaved in
the differential equation model search space, we initialize the
populations so that all individuals at the initial generation are
valid, and we use a steady-state GA mechanism to make
invalid individuals less likely to be passed on to later gen-
erations �29�. In the steady-state GA, 10% of the least fit
individuals from each population are replaced by offspring
resulting from crossover and mutation of the fittest individu-
als, unlike a generational GA where the entire population is
replaced each generation. For the nonhybrid GE, we ran the
GA for 1000 generations with 10 populations of 400 indi-
viduals �ODE systems� with migration of the most fit solu-
tion from each population to all other populations every 10
generations. For the GME approach, only one population of
100 individuals was used, thus, no migration was needed.
Due to the sparsity of typical biological time series, the UKF
algorithm requires several iterations through the data to
achieve convergence of model parameters. Optimal param-
eters can often be obtained in one sweep through time series
with higher sampling frequency.

Within the operon-model grammar, GE �nonhybrid� was
able to traverse the search space and identify the correct
connectivity and functional form of the model, the correct
variables responsible for gene regulation, and the approxi-
mate strengths of production and degradation of gene prod-
ucts. However, the infinite parameter search space leads to
slow convergence of the model parameters �see Sec. IV A
for more details on the dynamics of the GE model evolu-
tion�. The GME approach exhibits a dramatic improvement
over the nonhybrid approach. Not only were the GME-
inferred model parameters found with much higher precision
�see Table I�, but they were also found with much less com-
puting power. The GME method found the correct model in
less than 100 generations using one population �single pro-
cessor� with only 100 individuals, which represents a large
reduction in the number of fitness function evaluations. This
is also evidence that the GME method does not prematurely
converge to a local optimum for this nonlinear system iden-
tification problem.

A. Dynamics of evolution

Figure 2 shows the fitness of the best individual at each
generation for a typical nonhybrid GE run. The stair-step

appearance is due in part to the delay in the migration fre-
quency. This periodic migration allows each population to
build upon the evolutionary progress made by other popula-
tions by recombination of useful solution traits. Migration
also enables populations to more easily escape a local opti-
mum. In this particular run, the functional form of the model
was found by generation 100. The inset of Fig. 2 shows more
detail from this run for the time interval 0 to 100 generations.
The jumps in fitness seen in the inset of Fig. 2 are due to the
emergence of correct network connections. After the correct
model architecture is found, there is a period of slow but
steady increase in fitness as these favorable structures are
disseminated throughout all populations. In the terminology
of Ref. �30�, this period would be called the first “epoch of
innovation.” During this epoch, the dissemination of the fa-
vorable network connections allows for later rapid increases
in fitness due to improvements in the rate constants. For
example in Fig. 1, the doubling of the fitness during genera-
tion 360 to 400 is due to the considerable improvement of
two model parameters while preserving the correct model
connectivity found at generation 100. In contrast, the
memetic algorithm is able to find a very precise solution in
less than 100 generations using a much smaller population
size.

V. APPLICATION TO IMMUNOLOGIC DATA

We now apply GME to observed time-series cytokine pro-
tein concentration data �shown in Fig. 3� from subjects who
received the Aventis Pasteur smallpox vaccine. The model
was inferred by the GME method from human serum cytok-
ine levels measured after smallpox immunization. Cytokine
levels were measured at seven time points over a month,
resulting in the directed analysis of four cytokines. These
systemic cytokines, representing functional subsets TH1
�TNF-	 and IL-2� and TH2 �IL-4 and IL-10�, were measured
using a sensitive flow cytometric bead array analysis that
allowed for multiple cytokine analyses from a single sample
�31�. The study was reviewed and approved by the Vander-

FIG. 2. Fitness of the best-of-generation individual among all
populations versus the number of generations using the GE method.
A rapid increase in fitness is observed around generation 400 as
favorable model elements have had time to filter through the popu-
lations. Inset: Detailed look at evolution through generation 100 at
which time the correct functional form of the model is discovered.
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bilt Institutional Review Board, and samples were obtained
from volunteers following informed consent. The solid and
dashed lines in Fig. 3 are interpolations between the a pos-
teriori Kalman filter predictions of the state at the observed
time points for the final run of the GME algorithm with a
linear grammar. The predictor-corrector nature of the Kal-
man filter causes the estimated cytokine trajectories to obey
constraints at each sampled time step.

In a typical experiment, either protein or cell concentra-
tions are available, but they are usually not measured in a
coordinated fashion. However, it has been shown that linear
ODEs are capable of discovering phenomenological interac-
tion networks when elements from the full network are un-
observed �32�. Furthermore, when using a biologically real-
istic nonlinear grammar, such as the operon grammar,
network connections between biochemicals are often param-
etrized by more than one number �e.g, Hill parameters�,
making it more difficult to interpret a quantitative network
diagram. Thus, to obtain the network diagram in Fig. 4, we
used a linear ODE grammar. GME predicts causal connec-
tions between the cytokines and allows for the existence of
loops in the network topology when warranted by the data.
Bayesian networks do not allow loops as they prevent the
joint probability distribution of the estimated network from

being decomposed into a product of conditional probability
distributions �33�. Moreover, GME provides a quantitative
model of the dynamic system. In the network model of Fig.
4, TH1 cytokines are in the bottom row of nodes and TH2
along the top row. The TH1 response to an antigen produces
a cytokine profile that supports inflammation and primarily
activates certain T cells and macrophages, while the TH2
response mainly activates B cells and an antibody-dependent
immune response. It is interesting to note that our prelimi-
nary model predicts that the cytokines within each TH type
do not influence each other directly. The feedback loop be-
tween IL-2 and IL-4 suggests these cytokines as a bridge
across TH types. On a related note, our algorithm identifies
the well established fact that IL-4 is inhibitory to TH1 re-
sponses.

VI. DISCUSSION

We introduced a flexible, grammar-based method that
searches the space of model components and connectivities
and estimates the parameters of the nonlinear differential
equation models inferred from sparse biochemical time-
series data. Grammatical memetic evolution �GME� was able
to discover the correct form of the model and precise, unbi-
ased model parameters from simulated data with very sparse
sampling. By comparing GME with a nonhybrid method
�GE�, our simulation studies also provide evidence that the
memetic algorithm is not prone to premature convergence for
nonlinear dynamical system identification. We applied this
method to immunologic time-series data to identify a dy-
namical model for an individual’s cytokine response to
smallpox vaccine.

The grammar can be tailored to the biochemical system
under analysis if pathway or mechanistic information is
known about the system. New grammar rules, such as prod-
ucts of variables or more general operations, can be created
simply by modifying a text file, as opposed to recompiling
source code. If there is little prior knowledge of the system,
or if one wants GME to explore exotic biochemical mecha-
nisms, one can simply apply syntactic constraints on the

FIG. 3. Serum cytokine con-
centrations in �pg/ml� following
smallpox immunization and inter-
polations between the posterior
model predictions at the observed
time points. Dashed lines: state es-
timates for TH2 cytokines, IL-10
and IL-4. Solid lines: state esti-
mates for TH1 cytokines, IL-2 and
TNF-	.

FIG. 4. Cytokine protein interaction network inferred from hu-
man serum cytokine levels following smallpox vaccination. Bottom
row of nodes: TH1 cytokines. Top row of nodes: TH2 cytokines.
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grammar definition. A future direction is to incorporate prior
biological knowledge from databases, such as KEGG and
Biocarta, into the fitness function. This type of strategy has
been used in network inference algorithms �34� and may re-
duce the effect of noise and improve the power to predict
network connections.

The NP completeness of identifying an interaction net-
work with high accuracy makes it an intrinsically difficult
problem. Due to this difficulty, we implemented heuristic and
meta-heuristic search methods. While the current paper fo-
cused on the directed analysis of a small subset of biomol-
ecules, another future direction for larger, array-based ex-
periments is to use clustering and filtering strategies to
reduce the dimensionality of these high-throughput data sets
�35�. We are also developing a hybrid of UKF with genetic
programming �36�, another effective evolutionary algorithm
for equation discovery.

In this paper, our simulations were based on deterministic
models with additive external measurement noise. However,
there has been evidence to suggest that in some biological
systems, intrinsic noise may play an important role in deter-
mining cell phenotypes �37�. Some fluctuations observed in
the cytokine kinetics may be due to intrinsic stochastic
mechanism. The GME method is able to accommodate in-
trinsic noise in the underlying model, and, thus, a future
direction will be to determine the role of intrinsic noise
strength on the inference of stochastic models.
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